Ecuaciones logaritmicas


Ecuaciones exponenciales (con logaritmos)

Contenido de esta página:

1. Introducción

En algunas ecuaciones exponenciales es necesaria la aplicación de logaritmos para poder resolverlas. Esto ocurre básicamente cuando las exponenciales no tienen la misma base. Por ejemplo, la solución de la ecuación 6x+1=2x es
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
En esta página vamos a resolver 10 ecuaciones de este tipo. Para comprender los pasos se necesita conocer la definición y las propiedades de los logaritmos que damos a continuación.
Nota: no calcularemos las soluciones complejas.

2. Definición y propiedades del logaritmo

El logaritmo en base b del número positivo a se denota por logb(a) y su valor es el número c al que se debe elevar la base del logaritmo, b, para obtener el número a. Es decir,
logb(a)=cbc=a

Ejmplos:
  • el logaritmo en base 2 de 8 es 3 porque 2 al cubo es 8:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
  • el logaritmo en base 10 de 100 es 2 ya que 10 al cuadrado es 100:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
  • el logaritmo en base e (logaritmo natural, loge=ln) de e3 es 3 ya que e al cubo es e3:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Las propiedades de los logaritmos son las siguientes:
Logaritmo del producto:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Logaritmo del cociente:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
*Logaritmo de la potencia:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Cambio de base:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Propiedad útil en la práctica:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
*La tercera propiedad es principalmente la que facilita la resolución de las ecuaciones exponenciales puesto que permite escribir la incógnita (que está en el exponente) como un factor que multiplica a un número (al logaritmo).
Enlace: demostraciones de las propiedades (final de la página).

3. 10 Ecuaciones resueltas

Como cada autor emplea una notación, en cada ecuación indicaremos la base del logaritmo que aplicamos para evitar las confusiones. Asimismo, aproximaremos las soluciones para que sea más rápido comprobarlas si se han utilizado logaritmos en bases distintas.
Las primeras ecuaciones las explicaremos más detalladamente.
Ecuación 1
Resolver con logaritmos en base 10:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Solución
Escribiremos el logaritmo en base 10 sin indicar explícitamente la base (es lo habitual).
Aplicamos logaritmos en base 10:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Escribimos los exponentes fuera de los logaritmos (multiplicando):
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Calculamos los productos:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Escribimos en el lado izquierdo los elementos en los que aparece la incógnita y los otros en el lado derecho:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Extraemos el factor común x en el lado izquierdo:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Aplicamos la propiedad de la resta de logaritmos:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Finalmente, aislamos la incógnita:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato

Ecuación 2
La siguiente ecuación se puede resolver sin aplicar logaritmos, pero se pide resolver con logaritmos en base 3:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Solución
Aplicamos logaritmos en base 3:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Escribimos los exponentes fuera de los logaritmos:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Calculamos los logaritmos:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Por tanto, la ecuación queda como
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Y la solución es
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato

Ecuación 3
Resolver aplicando logaritmos en base 10:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Solución
Aplicamos logaritmos de base 10:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
El logaritmo del lado derecho podemos escribirlo como una suma:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Extraemos los exponentes de los logaritmos:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Escribimos en el lado izquierdo los sumandos que tienen la incógnita:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Finalmente, extraemos factor común y despejamos la incógnita:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato

Ecuación 4
Resolver aplicando el cambio de variable t=5x y logaritmos en base 5:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Solución
No podemos resolver la ecuación aplicando logaritmos directamente porque tendríamos una resta en el argumento:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Las propiedades de los logaritmos no permiten simplificar el logaritmo de la izquierda. Además, en la derecha tenemos un argumento negativo.
Si aplicamos el cambio de variable t=5x, entonces 52x queda como
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Con lo que la ecuación resultante es
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Es una ecuación de segundo grado cuya única solución es t=4.
Deshacemos el cambio de variable:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Aplicamos logaritmos en base 5 para resolver la ecuación exponencial que hemos obtenido:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato

Ecuación 5
Resolver mediante logaritmos en base 3:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Solución
Aplicamos directamente logaritmos en base 3:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
El logaritmo de la derecha puede escribirse como una suma:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Escribimos los exponentes fuera de los logaritmos:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Aislamos la incógnita:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato

Ecuación 6
Resolver aplicando logaritmos en base decimal (base 10):
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Solución
Simplificamos la ecuación antes de aplicar logaritmos. El segundo sumando de la izquierda puede escribirse como
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Operamos un poco en la ecuación:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Aplicamos logaritmos en base decimal:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Operando de forma similar a las ecuaciones anteriores,
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato

Ecuación 7
Escribir la siguiente ecuación como una ecuación exponencial para resolverla mediante logaritmos en base decimal:
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Solución


Ecuación 8
Resolver mediante el cambio de variable t=2x y aplicando logaritmos en base binaria (base 2):
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Solución
Ecuación 9
Resolver mediante logaritmos naturales (logaritmos en base eln(x)=loge(x)):
Resolución de ecuaciones exponenciales por aplicación de las propiedades de los logaritmos. También aplicamos cambio de variable en alguna de las ecuaciones. Ecuaciones exponenciales resueltas paso a paso. Secundaria. ESO. Bachiller. Bachillerato
Solución

No hay comentarios.: